Laplacian eigenvalues and the maximum cut problem

نویسندگان

  • Charles Delorme
  • Svatopluk Poljak
چکیده

We introduce and study an eigenvalue upper bound p(G) on the maximum cut mc (G) of a weighted graph. The function ~o(G) has several interesting properties that resemble the behaviour of mc (G). The following results are presented. We show that q~ is subadditive with respect to amalgam, and additive with respect to disjoint sum and 1-sum. We prove that ~(G) is never worse that 1.131 mc(G) for a planar, or more generally, a weakly bipartite graph with nonnegative edge weights. We give a dual characterization of ~o(G), and show that q~(G) is computable in polynomial time with an arbitrary precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 62  شماره 

صفحات  -

تاریخ انتشار 1993